**ชื่อเรื่อง** การบำบัดทรายปนเปื้อนแคดเมียมโดยการใช้ไมโครเวฟ

ผู้ศึกษาวิจัย สุทธิกานต์ สอดสี

**อาจารย์ที่ปรึกษา** ดร.อุกฤต สมัครสมาน

ประเภทสารนิพนธ์ วิทยานิพนธ์ปริญญาตรี วท.บ. ทรัพยากรธรรมชาติและสิ่งแวดล้อม,

มหาวิทยาลัยนเรศวร, 2567

คำสำคัญ การบำบัด, แคดเมียม, ทรายปนเปื้อน, ไมโครเวฟ

## บทคัดย่อ

แคดเมียม (Cd) เป็นโลหะหนักที่มีพิษสูง สามารถสะสมในสิ่งแวดล้อมและเข้าสู่ห่วงโซ่อาหาร ซึ่งก่อให้เกิดภัยคุกคามต่อสุขภาพของมนุษย์และระบบนิเวศอย่างร้ายแรง การศึกษานี้มี วัตถุประสงค์เพื่อประเมินศักยภาพของเทคโนโลยีไมโครเวฟในการลดการชะละลายและความ เข้มข้นรวมของ Cd ในตัวอย่างทรายที่ปนเปื้อน โดยทดลองใช้คลื่นไมโครเวฟที่ระดับพลังงาน 500. 600 และ 700 วัตต์ เป็นเวลา 3, 5 และ 8 นาที่ ตามลำดับ ประสิทธิภาพของการบำบัดถูกประเมิน ผ่านสองวิธีการ ได้แก่ (1) การวัดความเข้มข้นรวมของ Cd ด้วยวิธี Hotplate Digestion และ (2) การประเมินการชะละลายของ Cd ตามวิธี Toxicity Characteristic Leaching Procedure (TCLP) โดยใช้เครื่อง Atomic Absorption Spectroscopy (AAS) ในการวิเคราะห์ผล ผลการ ทดลองพบว่า สภาวะที่มีประสิทธิภาพสูงสุดคือ การใช้คลื่นไมโครเวฟ ที่ 700 วัตต์ เป็นเวลา 8 นาที ซึ่งสามารถลดทั้งความเข้มข้นรวมของ Cd และ Cd ที่ชะละลายได้ในทรายปนเปื้อนได้อย่างมี นัยสำคัญ ผลการทดสอบด้วย TCLP แสดงให้เห็นว่าการเพิ่มพลังงานไมโครเวฟช่วยลดการชะ ละลายของ Cd ซึ่งบ่งชี้ถึงการลดศักยภาพการแพร่กระจายของ Cd สู่สิ่งแวดล้อมและลดความเป็น พิษ ของ Cd กลไกที่อาจเกิดขึ้นประกอบด้วย (1) การให้ความร้อนอย่างรวดเร็วและรุนแรง ซึ่ง เปลี่ยนแปลงโครงสร้างทางกายภาพของทรายและตำแหน่งการยึดจับของ Cd (2) การเปลี่ยนแปลง ทางเคมี เช่น ปฏิกิริยาออกซิเดชัน-รีดักชัน ที่เปลี่ยน Cd ให้อยู่ในรูปที่เสถียรมากขึ้น และ (3) การ จับตัวเป็นก้อนหรือการกักเก็บ Cd ภายในเมทริกซ์ของทราย ซึ่งช่วยลดการละลายได้ การวิเคราะห์ เปรียบเทียบระหว่างวิถี TCLP และ Hotplate Digestion ให้ผลที่สอดคล้องกัน ยืนยันศักยภาพของ การบำบัดด้วยไมโครเวฟในการลดทั้งการเคลื่อนที่และปริมาณรวมของ Cd อย่างมีประสิทธิภาพ นอกจากนี้ เทคโนโลยีไมโครเวฟยังเป็นมิตรต่อสิ่งแวดล้อม เนื่องจากไม่ต้องใช้สารเคมีอันตราย สร้างของเสียน้อย และใช้พลังงานต่ำกว่าวิธีการให้ความร้อนแบบดั้งเดิม ดังนั้น การบำบัดด้วย ไมโครเวฟจึงเป็นทางเลือกที่มีศักยภาพสูงในการฟื้นฟูทรายและดินที่ปนเปื้อน Cd อย่างยั่งยืนใน คนาคต

Title APPLICATION OF MICROWAVE FOR TREATING SAND

POLLUTED WITH CADMIUM

Author Suttikan Sodsee

Advisor Dr. Ukrit Samaksaman

Academic Paper Undergraduate Thesis B. Sc. Natural Resources and

Environment, Naresuan University, 2024

Keywords Treatment, Cadmium, Contaminated sand, Microwave

## **ABSTRACT**

Cadmium (Cd) is a highly toxic heavy metal that can accumulate in the environment and transferring to the food chain, posing serious threats to human health and ecosystems. This study aimed to investigate the potential of microwave technology in reducing both the leachability and total concentration of Cd in the samples of contaminated sand. Experimental treatments were conducted using microwave irradiation at power levels of 500, 600 and 700 watts and using the different of operation times including 3, 5, and 8 minutes. The effectiveness of the treatment condition was evaluated through two analytical approaches such as (1) the determination of total Cd concentration using the Hotplate Digestion method, and (2) the assessment of Cdleachability based on the Toxicity Characteristic Leaching Procedure (TCLP). Cd concentrations in all samples were measured using Atomic Absorption Spectroscopy (AAS). The experimental results indicated that microwave treatment at 700 watts and the operation time at a 8 minute demonstrated the highest efficiency in reducing both the leachable and total Cd concentrations in Cd-contaminated sand. The TCLP results showed a slightly decrease trends due to the enhancing of microwave powers. At 700 watts, it could be reduced the Cd-leachate as the reduction of Cd-transportation to the environment and the toxicity of Cd. The mechanisms may include the reduction of Cd

leachability and Cd concentration through (1) rapid and intense heating, which alters the physical structure of sand and influences the binding sites of Cd; (2) chemical transformations, such as oxidation or reduction reactions that convert Cd into more stable forms; and (3) agglomeration or entrapment of Cd within the sand matrix, leading to decreased solubility. A comparative analysis of the TCLP and Hotplate Digestion methods revealed consistent trends, affirming the capability of microwave treatment to simultaneously reduce both the mobility and total content of Cd. Moreover, microwave technology presents an environmentally friendly approach, as it eliminates the need for hazardous chemical reagents, generates minimal waste, and consumes less energy compared to conventional heating methods. Therefore, microwave treatment may strong potential as a sustainable alternative for remediating Cd-contaminated sand and soil in the future.

